A Deep Q-Learning Agent for the L-Game with Variable Batch Training
نویسندگان
چکیده
We employ the Deep Q-Learning algorithm with Experience Replay to train an agent capable of achieving a high-level of play in the L-Game while selflearning from low-dimensional states. We also employ variable batch size for training in order to mitigate the loss of the rare reward signal and significantly accelerate training. Despite the large action space due to the number of possible moves, the low-dimensional state space and the rarity of rewards, which only come at the end of a game, DQL is successful in training an agent capable of strong play without the use of any search methods or domain knowledge.
منابع مشابه
Asynchronous Deep Q-Learning for Breakout with RAM inputs
We implemented Asynchronous Deep Q-learning to learn the Atari 2600 game Breakout with RAM inputs. We tested the performance of the our agent by varying network structure, training policy, and environment settings. We saw the he most notable improvement through changing the environment settings. Furthermore, we observed interesting training effects when we used a Boltzmann-Q Policy that encoura...
متن کاملPlaying FPS Games with Deep Reinforcement Learning
Advances in deep reinforcement learning have allowed autonomous agents to perform well on Atari games, often outperforming humans, using only raw pixels to make their decisions. However, most of these games take place in 2D environments that are fully observable to the agent. In this paper, we present the first architecture to tackle 3D environments in first-person shooter games, that involve p...
متن کاملDistributed Deep Q-Learning
We propose a distributed deep learning model to successfully learn control policies directly from highdimensional sensory input using reinforcement learning. The model is based on the deep Q-network, a convolutional neural network trained with a variant of Q-learning. Its input is raw pixels and its output is a value function estimating future rewards from taking an action given a system state....
متن کاملDeep Apprenticeship Learning for Playing Video Games
Recently it has been shown that deep neural networks can learn to play Atari games by directly observing raw pixels of the playing area. We show how apprenticeship learning can be applied in this setting so that an agent can learn to perform a task (i.e. play a game) by observing the expert, without any explicitly provided knowledge of the game’s internal state or objectives. Background Mnih et...
متن کاملDeep Attention Recurrent Q-Network
A deep learning approach to reinforcement learning led to a general learner able to train on visual input to play a variety of arcade games at the human and superhuman levels. Its creators at the Google DeepMind’s team called the approach: Deep Q-Network (DQN). We present an extension of DQN by “soft” and “hard” attention mechanisms. Tests of the proposed Deep Attention Recurrent Q-Network (DAR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.06225 شماره
صفحات -
تاریخ انتشار 2017